TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 7

MATHIAS BRAUN AND WENHAO ZHAO

Homework 7.1 (A general version of Bloch's theorem). Show if $f: U \to \mathbb{C}$ is holomorphic and $f'(c) \neq 0$ at a point $c \in U$, then f(U) contains disks of every radius $(3/2 - \sqrt{2})s|f'(c)|$, where $s \in (0, \operatorname{dist}(c, \partial U))$. In particular, show if $f: \mathbb{C} \to \mathbb{C}$ is entire and nonconstant, then $f(\mathbb{C})$ contains disks of arbitrarily large radii.

Homework 7.2 (Biholomorphic functions on the unit ball). Let $z_0 \in B_1(0)$ and define the function $\varphi_{z_0} \colon B_1(0) \to \mathbb{C}$ by

$$\varphi_{z_0}(z) := \frac{z - z_0}{1 - \overline{z_0} z}.$$

- a. Show φ_{z_0} is a biholomorphic map from $B_1(0)$ to $B_1(0)$.
- b. Show every biholomorphic map $f: B_1(0) \to B_1(0)$ is of the form $f = a \varphi_{z_0}$, where $a \in \partial B_1(0)^2$.

Homework 7.3 (Improvement of the Bloch constant). The purpose of this exercise is to improve the constant $3/2 - \sqrt{2}$ appearing in Bloch's theorem³. We will show that for every $f \in \mathcal{H}(\bar{B}_1(0))$ with f'(0) = 1 the image $f(B_1(0))$ contains a disk of radius $3\sqrt{2}/2 - 2$.

a. Motivated by Homework 7.1, we look for a function $F \in \mathcal{H}(\bar{B}_1(0))$ such that $f(B_1(0)) = F(B_1(0))$ with maximal value |F'(0)|. To make this precise, set

$$\mathcal{F} := \{ f \circ (a \varphi_{z_0}) : z_0 \in B_1(0), \ a \in \partial B_1(0) \},$$

where φ_{z_0} is from Homework 7.2. Show that every $h \in \mathcal{F}$ with $h = f \circ (a \varphi_{z_0})$ obeys $h \in \mathcal{H}^1(\bar{B}_1(0)), h(B_1(0)) = f(B_1(0))$ and $|h'(0)| = |f'(-az_0)|(1 - |z_0|^2)$.

b. Let q denote the maximizer of the assignment $|f'(z)|(1-|z|^2)$, where $z \in \bar{B}_1(0)$. Show $q \in B_1(0)$ and that, setting $F := f \circ (\varphi_{-q})$, we have

$$|F'(z)| \le \frac{|f'(q)|(1-|q|^2)}{1-|z|^2}.$$

c. Deduce $|F'(z)| \le 2|F'(0)|$ whenever $|z| \le \sqrt{2}/2$. Conclude the proof using Step 2 of the proof of Bloch's theorem in the lecture.

$$0.4332127... = \frac{\sqrt{3}}{4} + 2 \cdot 10^{-4} \le B \le \frac{1}{\sqrt{1 + \sqrt{3}}} \frac{\Gamma(1/3) \Gamma(11/12)}{\Gamma(1/4)} = 0.4718617...$$

Date: November 11, 2024.

¹Recall a map is biholomorphic if it is bijective, holomorphic, and its inverse is holomorphic.

²**Hint.** Recall the Schwarz lemma.

 $^{^{3}}$ The optimal constant (say B) in Bloch's theorem is not known. There are lower and upper bounds. The best known thus far are

2 HOMEWORK 7

Homework 7.4 (Optional and difficult exercise). Let $G \subset \mathbb{C}$ be a simply connected domain and let $f: G \to \mathbb{C}$ be holomorphic. We define $P := f(G) \cap \{-1, 1\}$. Show there exists a holomorphic function $g: G \to \mathbb{C}$ such that $f = \cos(g)$ if and only if for each $z_0 \in P$ the function $f - f(z_0)$ has a zero of even order⁴.

⁴**Hint.** Show one can define the assignment $g(z) := -i \log(f(z) + \sqrt{f(z) + 1} \sqrt{f(z) - 1})$. To define the square root, the Weierstraß product theorem might help.